

Compatible Chemical Storage Reference

The University of Iowa

Date (s) Revised: 05/2012

Appropriate chemical storage plans are designed to control physical and health hazards associated with laboratory chemical storage. There are several chemical compatibility schemes or methods available. Each one is somewhat different but they have many similarities. No one system can address every possible undesired chemical combination. This guideline discusses some of the compatible storage schemes that may be used so that chemicals of different hazard classifications can be safely stored together. The (material) safety data sheet from the manufacturer should be consulted as a primary reference for storage guidance for that material.

EHS offers a safety course through ICON that provides more detailed information about safe chemical storage. This may be accessed through HR Self Service and/or via the EHS web site. **Chemical Storage Safety – W126CM**; this EHS training is recommend initially and annually. The audience is persons who work with and/or store chemicals in research labs.

General Guidelines for Safe Chemical Storage

Designate a safe storage location for each chemical. Storage location should be marked on each chemical container.

- Always store chemicals by recommended compatible storage group. Alphabetical storage is only used within a compatible storage group, never as a chemical storage plan.
- When determining how to store the chemical, always check the chemical label and MSDS/SDS first for the manufacturer's recommended compatible storage.
- Keep chemicals away from ignition sources. Store flammable and combustible chemicals in an approved flammable chemicals storage cabinet.
- Avoid storing chemicals in direct sunlight or near a localized heat source.
- Store flammable and potentially explosive chemicals according to the manufacturer's directions or according to MSDS instructions.
- Use secondary containers to physically segregate incompatible chemicals when they are stored in the same physical location.
- Label and date chemical containers when received and opened. Label working solutions or chemicals removed from their original container so that all individuals know what is in a given container.
- Maintain chemical identification labels, containers, and lids in good condition.
- Keep chemical containers closed with properly fitted caps when not in use.
- · Hazardous chemicals must not be stored above shoulder height.
- Do not store stock chemical supplies in a fume hood. This interferes with proper hood airflow and can provide fuel if there is a fire within the fume hood. Flammable chemicals should not be stored in a fume hood.
- Chemicals should never be stored on the floor.
- Chemical shelving should have containment lips or trays to contain small leaks/spills. Chemical cabinets should have a leak proof door sill.

- Shelving should be strong enough to hold the weight of chemicals being stored on them. Do not overload shelves. Always secure shelving to a permanent structure. Shelves should be coated with a chemical-resistant material such as chemical-resistant paint or another coating such as epoxy.
- Do not store chemicals in a domestic refrigerator or walk-in cooler. These refrigeration devices contain ignition sources such as unsealed electrical contacts. Flammable-safe refrigerators should be used whenever flammable chemicals need to be refrigerated. Additionally, walk-in coolers are not vented, creating the potential for accumulation of chemical vapors.
- Every 60 days, as stated in the DHS Chemicals of Interest reminder e-mail sent by EHS, check that your documented chemical list matches your lab's physical chemical inventory (or at least once a year if your lab purchases or uses few chemicals). At the time you perform your inventory, look for expired chemicals and dispose of them properly.

Secondary Containment Guidelines

Secondary containment is recommended to segregate chemicals from other incompatible chemicals within the same storage cabinet. Segregating incompatible chemicals using secondary containment is helpful when chemical storage space is limited. Secondary containment is also recommended when storing highly toxic materials to minimize exposure should the primary container become damaged. For example, store liquid mercury inside a labeled unbreakable secondary container. Small containers of compatible chemicals may be stored in a desiccator or other secure device. Secondary containers should be compatible with the chemicals stored in them. They should not corrode or degrade easily.

Chemical Storage Groups and Code Systems

It is important that you segregate hazardous materials according to Compatible Storage Groups. The storage groups allow you to safely organize chemicals with different or multiple hazards. There are several appropriate chemical storage strategies that may be used. The first example below is a list of compatible groups developed by Stanford University (ChemTracker) into which chemicals can be segregated.

Examples of laboratory chemicals in the following Compatible Storage Groups are found on page 4 below.

Compatible Storage Groups, Stanford University ChemTracker

- A Organic Bases, Flammables, and Poisons
- **B** Pyrophoric Materials and Water Reactive Materials
- C Inorganic Bases, Oxidizers, and Poisons
- D Organic Acids, Flammables, and Poisons
- E Oxidizers, Organic Peroxides, and Acids
- F Inorganic Acids not including Oxidizers and Combustibles
- G Not Intrinsically Reactive or Flammable or Combustible
- J Poison Compressed Gasses, not Flammable or Reactive
- K Compatible Explosives or Other Highly Unstable Material
- L Non-Reactive Flammable and Combustible Materials, including Solvents
- X Incompatible with all other storage groups

Another system of compatible storage groups consists of nine chemical categories. In this plan there are nine storage groups. Seven of these groups cover storage of liquids because of the wide variety of hazards posed by these chemicals. Specific instructions must be followed for metal hydrides (Group VIII) and certain individual compounds, but otherwise, dry solids are in Group IX. *Many liquid chemicals pose hazards that correspond to more than one storage group. These chemicals should be stored in the lowest group number.*

Compatible Storage Groups, Fred Hutchinson Cancer Research Center

Group I	Flammable Liquids		
Group II	Poisons - volatile		
Group III	Acids - Oxidizing		
Group IV	Acids - Organic and Mineral		
Group V	Bases - Liquid		
Group VI	Oxidizer - Liquid		
Group VII	Poisons - Non-volatile		
Group VIII	Reactives		
Group IX	Solids		

Additional information about this storage group system including 2 storage plan illustrations can be found on the EHS web site in the document <u>"Chemical Storage: Nine Compatible Storage Group System"</u>.

General Summary of Several

nufacturer's Chemical Storage Code Systems				
Color Code				
Red				
Blue				
Yellow				
White				
Gray, Green, Orange				
Stripe 💦				

Other systems include manufacturer storage code systems on product labels. For example, Fisher has the following colored storage group codes on chemical labels:

- Red = flammable storage
- Blue = health hazard; store in secure area
- Yellow = reactive and oxidizing agents; may react violently with air, water, or other substance; store away from flammables and combustibles
- White = corrosive; store away from red-, yellow-, and blue- coded reagents,
- Gray = general chemical storage).

Mallinckrodt/J.T. Baker/Macron also has a color code system:

- Blue = store in secure poison area
- Red = store in flammable liquid storage
- Yellow = store separately and away from flammables or combustibles
- White = store in corrosion-proof area
- Green/formerly orange = general storage area
- Striped = indicates incompatible with other materials in the same color class; assess individual storage

Group A – Compatible Organic Bases	Group D – Compatible Organic	Group G – Not Intrinsically Reactive	Group L – Non-Reactive Flammables and Combustibles, including
	Acids	or Flammable or Combustible	Solvents
• Ethanolamine		(solids, store separately above	
Isopropylamine	Butyric acid	liquids)	Alcohols Formaldehyde, 37%
Triethanolamine	Citric acid monohydrate	Acrylamide, bis-acrylamide	Acetaldehyde Formamide
Triethylamine	Formic acid	Agarose	Acetone Hexane
• TEMED	• Glacial acetic acid (also - store	Ammonium thiosulfate	Acetonitrile Hydrazine
(Tetramethylethylenediamine)	with flammables if segregated)	Chloroquine diphosphate	Amyl acetate Isoamyl alcohol
Diaminobenzidine (DAB)	• 4-Morpholinepropanesulfonic	Coomassie brilliant blue	 Benzene β-Mercaptoethanol
	acid (MOPS buffer)	Dextrose	Carbon disulfide Methyl ethyl ketone
	Propionic acid	Dithiothreitol	Cyclobexape Methylene chloride
		Guanidine hydrochloride	Dichloromethane Paraformaldebyde solid
		 Magnesium chloride 	Diethyl pyrocarbonate Phenol
		Methotrexate	Directly pyrocarbonate Pineridine Directly formamide Pineridine
		Sodium citrate	Dimethyl sulfate Propagal
		• Sodium phosphate, monobasic	Dimethyl sufface Propanol Sodium dodocul sulfate
		Potassium chloride	Dimetryisuloxide (Diviso) Sodium dodecyr sunate (SDS)
		Potassium ferricyanide	Dioxane (SDS) Tetrohydrofuron
		• X-Gal (5-Bromo-4-chloro-3-	Ethyl extets Telyana Telyana
		indolyl-B-D-galactopyranoside)	Ethyl acetate Toluene
			• Xylenes
Group C – Compatible Inorganic Bases	Group E – Compatible Oxidizers	Group F – Compatible Inorganic	Group G – Not Intrinsically Reactive or Flammable or Combustible
	including Peroxides	Acids not including Oxidizers or	
Ammonium hydroxide		Combustibles	(liquids)
 Potassium hydroxide 	Ammonium nitrate		a. Chilere farme
Sodium hydroxide solutions	Ammonium perchlorate	Hydrochloric acid	Chloroform
	Annonium persuitate Benzovi perovide wet	Nitric acid	Isoflurane
	tert-Butyl hydroperoxide	Phosphoric acid	
	Calcium hypochlorite	Sulfuric acid	Non-reactive chlorinated solvents may be stored with flammables.
	Chlorosulfonic acid		
	Chromic acid		
	Fuming nitric acid		
	 Hydrogen peroxide, 30% 		
	Isoamyl nitrite		
	Potassium chlorate		
	Potassium dichromate Potassium permanganate		
	Foldssium permanganate Silver nitrite		
	Sodium chlorate		
	Sodium chlorite		
	Sodium hypochlorite solution		
	(bleach)		

Examples of Chemicals in the Compatible Storage Groups, Stanford University ChemTracker

Group X – Incompatible with ALL	Group B – Compatible Pyrophoric	Examples Compressed Gases and	Examples of Group K – Compatible Explosive or other highly Unstable
Group X – Incompatible with ALL other storage groups • Sodium azide • Picric acid 10-40% water	 Group B – Compatible Pyrophoric and Water Reactive Materials Acetyl chloride Lithium aluminum hydride, other metal hydrides Phosphorus pentachloride Silanes such as Silane gas, Dimethyldichlorosilane Examples Compresses their respective CT Co Storage Group Arsine (X) Carbon mono Chlorine (E) Cyanogen ch poison) Fluorine (E) 	Examples Compressed Gases and their respective CT Compatible Storage Group Ammonia (C) Arsine (X) Carbon monoxide (L) Chlorine (E) Cyanogen chloride (J - poison) Fluorine (E) Formaldehyde gas (L) Hydrogen (L) Hydrogen chloride (F) Hydrogen cyanide (C) Hydrogen sulfide (L) Nitric oxide (E) Ozone (E) Phospine (B) Silane (B) Sulfur tetrafluoride (B) Tellurium hexafluoride (J - poison)	Examples of Group K – Compatible Explosive or other highly Unstable Materials Ammonium picrate, dry Benzoyl peroxide, 97% Dinitrophenol Mercury fulminate Nitroglycerin Picric acid, dry
	 Sodium Sodium hydride Toluene 2,6-diisocyanate 		Trinitrotoluene (TNT)

Another more detailed chemical mixing compatibility chart is also available. It is based on a source from the Environmental Protection Agency. At the link, you will open an Excel file that appears similar to the image below. Because this chart has numerous categories, it can be referenced to help form a better decision about the storage category of a particular chemical when more information is needed.

Chemical Mixing Compatibility Chart

EHS Contacts for Chemical Storage Safety Questions

Rick Byrum, <u>richard-byrum@uiowa.edu</u>, 335.9379 LuAnn Hiratzka, <u>luann-hiratzka@uiowa.edu</u>, 335.7964